Mark H. Voges and R. Morris Bullock *

Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

Received 28th August 2001, Accepted 2nd October 2001 First published as an Advance Article on the web 21st January 2002

Ketone complexes $[CpM(CO)_2(PR_3)(\eta^1-Et_2C=O)]^+BAr'_4$ (R = Ph or Me; M = Mo or W) were prepared from hydride transfer from $Cp(CO)_2(PR_3)MH$ to $Ph_3C^+BAr'_4^-[Ar'=3,5-bis(trifluoromethyl)phenyl]$ in the presence of 3-pentanone. These ketone complexes are catalyst precursors for hydrogenation of Et₂C=O under mild conditions (23 °C, <4 atm H₂). Analogous catalytic hydrogenations are obtained from reaction of the PCy₃ complexes Cp(CO)₂(PCy₃)MH with Ph₃C⁺BAr'₄. The proposed mechanism involves displacement of the ketone by H₃, producing a cationic metal dihydride $[CpM(CO)_3(PR_3)(H)_2]^+$. Proton transfer from the dihydride gives a protonated ketone, followed by hydride transfer from the neutral metal hydride CpM(CO)₂(PR₃)H to produce the alcohol complex [CpM(CO)₂(PR₃)(Et₂CHOH)]⁺. The free alcohol product is released from the metal through displacement by H₂ or ketone, completing the catalytic cycle. In most cases, conversion of the ketone or alcohol complexes to the dihydride is the turnover-limiting step of the catalytic cycle, with ketone and alcohol complexes being observed during the reaction. For reactions using the W-PCy₃ system, the dihydride $[CpW(CO),(PCy_3)(H)_1]^+$ is observed as the resting state of the catalytic process. Proton transfer is slow and becomes turnover-limiting in this case. The Mo catalysts are more active than W, and the dependence on phosphine is PCy₃ > PPh₃ > PMe₃. The turnover rates are slow, with the fastest initial rate of about 2 turnovers per hour found for the Mo-PCy₃ system. This ionic hydrogenation mechanism does not require coordination of the ketone to the metal for the hydrogenation, thus differing from traditional mechanisms where coordination of a ketone to a metal precedes insertion of the ketone into a M-H bond.

Introduction

Hydrogenation of ketones to alcohols is a reaction of fundamental importance and practical utility, being used in the synthesis of fine chemicals as well as compounds used in the pharmaceutical and agricultural industries. Main group hydride reagents such as NaBH₄ and LiAlH₄ are often used for the reduction of C=O bonds; these reactions are well-developed and immensely useful, but they consume stoichiometric amounts of the hydride reagent and produce waste by-products.

Many transition metal homogeneous hydrogenation catalysts have been developed. Rhodium dihydride catalysts for ketone hydrogenation were reported by Shrock and Osborn over 30 years ago, and highly enantioselective hydrogenations using Rh catalysts have been reported more recently. Ruthenium phosphine complexes have also been shown to be effective catalysts for ketone hydrogenations. The traditional mechanism for these hydrogenations involves coordination of the ketone to the metal, followed by insertion of the ketone into a metalhydrogen bond (eqn. (1)). The alcohol product is released from

the metal through a reductive elimination reaction involving the second metal hydride bond. This type of mechanism relies on the ability of the metal hydride bond to insert ketones. If such a step were not required, then new types of catalysts could potentially be developed based on different mechanisms for delivery

† Based on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany.

DOI: 10.1039/b107754f

of H₂ to the C=O bond. In addition to attempting to develop catalytic pathways that rely on different reactivity patterns for the M-H bonds, this offers the possibility of using less costly metals such as molybdenum or tungsten as alternatives to the use of more expensive rhodium or ruthenium in the well-established pathways cited above.

An example of the potential that alternative hydrogenation methods offer is provided by the fantastically reactive Ru catalysts developed by Noyori and co-workers. 5.6 Some of these catalyze the highly enantioselective hydrogenation of ketones using H₂, while others operate by transfer hydrogenation, using isopropanol as the source of the hydrogen. These and related catalysts that now appear to proceed through mechanisms that do not require coordination of the ketone to the metal will be discussed in a later section.

An alternative method for delivery of H₂ is through ionic hydrogenation, in which a proton and a hydride are sequentially transferred to a ketone or other substrate. Kursanov and coworkers pioneered the use of CF₃CO₂H as the H⁺ source and HSiEt₃ as the H⁻ donor for use in the stoichiometric ionic hydrogenations of ketones and numerous other unsaturated organic compounds.7 The versatile reactivity patterns of metal hydrides suggest the possibility of using a metal hydride bond as a source of protons, and a second metal hydride bond as a hydride donor in ionic hydrogenations. These two types of heterolytic cleavage have been demonstrated. Metal hydrides can serve as acids; the kinetic and thermodynamic aspects of proton transfer from metal hydrides have been established.8 Metal hydrides can function as hydride donors,9 and the kinetics of hydride transfer reactions from a series of metal hydrides toward Ph₃C⁺ have been reported. 10,11

In view of our intention of having both proton and hydride donors for the metal-catalyzed ionic hydrogenation of ketones, the next goal was to incorporate both of these reactions in a single metal center. Meeting this challenge requires proper balancing of both steps, since an acidic dihydride as the proton donor would be coupled to a conjugate base (the metal hydride) that must be adequately hydridic to carry out the hydride transfer. Each step of the mechanism may be sensitive to the steric and electronic properties of the ligands, and these effects could be opposite for the proton and hydride transfers. For example, a more electron-donating phosphine (e.g., PMe₃ > PPh₃) will make a cationic MH₂⁺ less acidic, but will also make the neutral MH more hydridic. 10,11

We established the use of transition metal hydrides as the hydride donor in stoichiometric ionic hydrogenations. The C=C bonds of some hindered alkenes are hydrogenated at −50 °C through reaction with HOTf (OTf = OSO₂CF₃) and metal carbonyl hydrides. The C=C bonds of certain alkynes are also hydrogenated by HOTf and Cp(CO)₃WH, and related reactions can be used for the conversion of acetals to ether complexes. In Ionic hydrogenations of aldehydes or ketones by HOTf and Cp(CO)₃WH lead to the formation of kinetically stabilized alcohol complexes (eqn. (2)). Is, Ionic hydrogenations of the viability of

$$C_{p(CO)_{3}WH} + \bigcup_{\substack{H \\ C \sim R'}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset R \\ O \subset O \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset R \\ O \subset O \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset R \\ O \subset O \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset R \\ O \subset O \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset R \\ O \subset O \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset R \\ O \subset O \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset A \\ O \subset A \\ O \subset A \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset A \\ O \subset A \\ O \subset A \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset A \\ O \subset A \\ O \subset A \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset A \\ O \subset A \\ O \subset A \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

$$O = \bigcup_{\substack{H \\ O \subset A \\ O \subset A \\ O \subset A \\ H}}^{O} \underbrace{CF_{3}SO_{3}H}_{CF_{3}SO_{3}H}$$

using metal hydrides as the hydride donor is thus demonstrated, albeit in reactions that require stoichiometric amounts of both the acid and the hydride donor. The goal of making such reactions catalytic in the metal would be more interesting, using hydrogen as the ultimate source of both H⁺ and H⁻. Obtaining this goal requires two key reactions of the catalyst in addition to the hydride transfer reactions already demonstrated—it must be capable of protonating the ketone and capable of reacting with H₂ to regenerate two M–H bonds. Our initial success in this endeavor was reported in a preliminary communication.¹⁷ We report here the preparation of ketone complexes of molybdenum and tungsten, and a study of their use in catalytic hydrogenation of ketones by an ionic mechanism.

Results and discussion

Synthesis of ketone complexes [Cp(CO)₂(PR₃)M(η¹-Et₂C=O)]⁺

Ketone complexes are often prepared by addition of a ketone to a metal complex containing a weakly coordinating ligand. Beck and co-workers extensively developed the chemistry of metal complexes with weakly bound BF_4^- and PF_6^- ligands.¹⁸ They prepared Mo and W complexes such as Cp(CO)₃MoFBF₃ by reaction of Cp(CO)₃MoH with Ph₃C⁺BF₄-. ^{19,20} Reaction of these M-FBF3 complexes with ketones produced cationic ketone complexes. 19,21 The ketone complexes used in our studies were synthesized by a closely related method, using BAr'4-[Ar' = 3,5-bis(trifluoromethyl)phenyl] as the counter ion. Hydride transfer from Cp(CO)₂(PPh₃)WH to Ph₃C⁺BAr'₄ in the presence of 3-pentanone, produces the ketone complex cis-[CpW(CO)₂(PPh₃)(η^{1} -Et₂C=O)]⁺BAr'₄⁻ (eqn. (3)). This complex was isolated as an orange solid in 88% yield and was characterized by ¹H, ¹³C and ³¹P NMR, IR, and elemental analysis. The ¹³C resonance of the bound ketone carbonyl appears at δ 236.2, which is downfield of the carbonyl resonance of free Et₂C=O at δ 212.5. The CO ligand trans to PPh₃ appears as a doublet (${}^2J_{PC} = 6$ Hz) at 240.1; the CO ligand cis to PPh₃ has a larger coupling constant $(^2J_{PC} = 21 \text{ Hz}).^{22} \text{ A}$ weak band in the IR spectrum at 1632 cm⁻¹ is assigned to the ν (C=O) of the bound ketone, at an energy lower than that of

$$Cp(CO)_{2}(PPh_{3})W-H + Ph_{3}C \xrightarrow{\ominus} CF_{3} \xrightarrow{CF_{3}} 4 + Et \xrightarrow{C} Et \xrightarrow{(3)}$$

$$O^{C} \xrightarrow{W} O \approx C^{'} Et \xrightarrow{\Theta} BAr'_{4} + Ph_{3}C-H$$

the corresponding band of free Et₂C=O at 1712 cm⁻¹. These spectroscopic characteristics indicate that the ketone in $[CpW(CO)_2(PPh_3)(\eta^1-Et_2C=O)]^+$ is bound to tungsten through donation from a lone pair on oxygen, in an η^1 , or σ , bonding mode, based on diagnostic NMR and IR criteria established to distinguish between $\eta^1(\sigma)$ and $\eta^2(\pi)$ bonding modes.²³

Similar reactions of the molybdenum and tungsten hydrides Cp(CO)₂(PPh₃)MoH, Cp(CO)₂(PMe₃)MoH, and Cp(CO)₂-(PMe₃)WH led to the isolation of the corresponding ketone complexes. These ketone complexes decompose slowly when left in CD₂Cl₂ solution for a few days, but this decomposition is inhibited by the presence of excess free ketone, i.e., conditions under which the catalytic reactions are carried out. Whereas the isolated sample of $[CpW(CO)_2(PPh_3)(\eta^1-Et_2C=O)]^+$ was the cis isomer, the ketone complexes [CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺, $[CpMo(CO)_2(PMe_3)(Et_2C=O)]^+$, and $[CpW(CO)_2(PMe_3)^-$ (Et₂C=O)]⁺ were initially observed as mixtures of cis and trans isomers. Prior studies of neutral and cationic Mo and W complexes with "four-legged piano stool" geometries established ¹H NMR criteria to readily distinguish cis from trans isomers. 10,24 The Cp resonance of the *trans* isomer is a doublet $(J_{PH} \approx 2 \text{ Hz})$ appearing about 0.2-0.3 ppm upfield of the singlet resonance due to the Cp of the cis isomer. Isomerization of the isolated cis/trans mixture occurs readily under mild conditions. For example, the trans isomer of [CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺ dominated in the isolated product, but an NMR spectrum taken after 16 hours showed nearly complete isomerization to the cis isomer, with only 2% trans isomer remaining. The isomerization appears to occur only in solution and not in the solid state.

Synthesis of alcohol complexes [Cp(CO)₂(PR₃)M(Et₂CHOH)]⁺

The alcohol complexes cis- $[CpM(CO)_2(PPh_3)(Et_2CHOH)]^+$ were prepared (eqn. (4)) for both M = Mo and W, from reac-

$$Cp(CO)_{2}(PPh_{3})W-H + Ph_{3}CBAr'_{4} \xrightarrow{Et_{2}CHOH}$$

$$OC \xrightarrow{W} OC_{C-H} \xrightarrow{BAr'_{4}} + Ph_{3}C-H$$

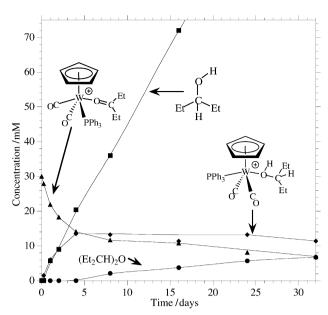
$$Et$$

$$(4)$$

tions similar to those used in the preparation of the ketone complex (eqn. (3)). These alcohol complexes were isolated and fully characterized. The *trans* isomers of these same alcohol complexes were prepared through hydrogenation of the ketone complexes, as will be discussed in a later section.

Reaction of CpMo(CO)₂(PMe₃)H with Ph₃C⁺BAr'₄⁻ in CH₂Cl₂, followed by addition of Et₂CHOH, did not produce [CpMo(CO)₂(PMe₃)(Et₂CHOH)]⁺, but instead led to the isolation of {[CpMo(CO)₂(PMe₃)]₂(μ-H)}⁺BAr'₄⁻, a bimetallic complex with a bridging hydride (eqn. (5)). Hydride transfer from CpMo(CO)₂(PMe₃)H to Ph₃C⁺ would produce [CpMo-(CO)₂(PMe₃)(CH₂Cl₂)]⁺, in which the 16-electron cation "Cp-Mo(CO)₂(PMe₃)⁺" is weakly solvated by CH₂Cl₂. Evidence for this complex was obtained from low-temperature NMR experiments in hydride abstractions from CpMo(CO)₂(PMe₃)H

with Ph₃C⁺PF₆⁻. ¹⁰ Reaction of a second equivalent of CpMo-(CO)₂(PMe₃)H with [CpMo(CO)₂(PMe₃)(CH₂Cl₂)]⁺ would displace the weakly bound solvent ligand, producing the bridging hydride complex. This reaction pathway may be favored due to the higher nucleophilicity of CpMo(CO)₂(PMe₃)H compared to CpMo(CO)₂(PPh₃)H. The Mo-H bond of CpMo(CO)₂-(PMe₃)H, with a trialkylphosphine PMe₃, is expected to be less acidic than CpMo(CO)₂(PPh₃)H, which has a PPh₃ ligand.⁸ Norton and co-workers found examples where the nucleophilicity of metal hydrides was largely the opposite of the order of kinetic acidity.²⁵ Thus our reaction is consistent with their observations, since CpMo(CO)₂(PMe₃)H would appear to be more nucleophilic than CpMo(CO)₂(PPh₃)H. Reactions in which a neutral metal hydride reacts with an unsaturated (or weakly coordinated) metal complex have led to many other examples of bridging hydrides, as reviewed by Venanzi.²⁶ Another synthetic route to bridging hydride complexes is through protonation of metal-metal bonded dimers. Nataro and Angelici previously reported that {[CpMo(CO)₂(PMe₃)]₂-(µ-H)}+OTf⁻ is formed by protonation of the neutral dimer with HOTf.27 As expected, our complex with the BAr'4counter ion has IR and NMR spectra very similar to those reported ²⁷ for Angelici's complex with the OTf⁻ counter ion.


Catalytic hydrogenations with ketone complexes $[Cp(CO)_2(PPh_3)M(\eta^1-Et_2C=O)]^+$ (M = Mo, W)

When solutions of the isolated ketone complexes in CD₂Cl₂ were reacted under H₂ with Et₂C=O, hydrogenation of the C=O bond occurs, leading to the alcohol product Et₂CHOH (eqn. (6)). These experiments were carried out in NMR tubes sealed

$$\underset{Et}{\overset{O}{\underset{C}{\mid}}} \underset{Et}{\overset{C}{\underset{Et}{\mid}}} \underbrace{\overset{[Cp(CO)_2(PR_3)M(O=CEt_2)]BAr'_4}{H_2(<4 \text{ atm}), 23 \text{ °C}}} \overset{O}{\underset{Et}{\overset{C}{\underset{H}{\mid}}}} \overset{H}{\underset{Et}{\overset{C}{\underset{H}{\mid}}}} \underbrace{(6)}$$

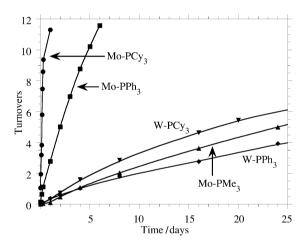

under 1 atm H₂ at liquid nitrogen temperatures. When warmed to room temperature, this leads to an actual pressure in the tube of almost 4 atmospheres. Under these conditions the concentration of H₂ dissolved in the CD₂Cl₂ is about 15 mM, as determined by integration of the resonance for dissolved H₂ at δ 4.60. The amount of H₂ in solution determined by ¹H NMR integration is less than the actual amount because of the presence of 25% para-H₂ present in H₂, so a correction factor has to be applied to account for this, multiplying the integrated amount by 1.33 to determine the actual concentration. The total amount of H₂ in the tube is sufficient to hydrogenate all of the ketone, but most of it is in the gas phase above the solution. A variety of concentrations and conditions were used to test the various ketone complexes as catalysts. A standard set of conditions was chosen for comparison of the catalysts: 25-30 mM $[CpM(CO)_2(PR_3)(Et_2C=O)]^+BAr'_4$ and 300 mM $Et_2C=O$ (10–12 equivalents) in CD_2Cl_2 at 23 °C under <4 atmospheres H_2 . An internal standard for integration of the ¹H spectra was used. Carrying out these experiments with only about 10 equivalents of ketone provided a sufficiently low ratio of ketone to metal such that the organometallic complexes as well as the organic starting material and products could all be integrated accurately by ¹H NMR. In addition, ³¹P spectra were recorded, providing an independent measure on the relative amounts of the organometallic species.

Fig. 1 shows the time profile of the concentrations from the catalytic hydrogenation of Et₂C=O by [CpW(CO)₂(PPh₃)-

Fig. 1 Time profile of the catalytic hydrogenation of Et₂C=O (300 mM) by $[CpW(CO)_2(PPh_3)(Et_2C=O)]^+$ (30 mM) under H₂ (<4 atm) in CD_2Cl_2 at 23 °C.

(Et₂C=O)]⁺BAr'₄⁻. Slow hydrogenation occurs, producing the alcohol Et₂CHOH, giving 1 turnover in 4 days and 4 turnovers after 24 days. Fig. 2 shows a comparison of the activity of

Fig. 2 Comparison of catalytic hydrogenation of Et₂C=O (300 mM) by $[CpM(CO)_2(PR_3)(Et_2C=O)]^+$ (25–30 mM) under H₂ (<4 atm) in CD_2Cl_2 at 23 °C.

this and other catalysts. The formation of the hydrogenation product alcohol is accompanied by smaller amounts of the ether (Et₂CH)₂O arising from condensation of two alcohols (eqn. (7)) After 24 days, the concentration of the alcohol Et₂-CHOH was 102 mM and that of the ether (Et₂CH)₂O was 6 mM.

As the reaction proceeds, the concentration of the initial ketone complex [CpW(CO)₂(PPh₃)(Et₂C=O)]⁺ decreases, with the concomitant appearance of new NMR resonances due to the alcohol complex *trans*-[CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺. We previously found that alcohol complexes were formed in stoichiometric ionic hydrogenations of ketones (eqn. (2)), and these new observations show they are involved in catalytic hydrogenations as well. The concentration of this alcohol complex surpasses that of the ketone complex as the reaction proceeds.

As indicated in Fig. 1, ketone and alcohol complexes were the predominant tungsten products throughout the catalytic reaction. Information about a catalyst deactivation pathway was provided by observation of about 8% of the phosphonium cation HPPh₃⁺, identified by ³¹P NMR and confirmed by comparison with an independently prepared sample. The protonated phosphine presumably forms by protonation of free PPh₃ by the cationic dihydride [CpW(CO)₂(PPh₃)(H)₂]⁺, as shown in eqn. (8). Small amounts of the neutral tungsten hydride CpW(CO)₂(PPh₃)H are also observed at the end of the catalytic reaction, as implied by the stoichiometry of eqn. (8). While the

$$Ph_{3}P_{H}^{\text{intermed}} \stackrel{+}{\underset{H}{\overset{\oplus}{\bigcap}}} PPh_{3} \xrightarrow{H-PPh_{3}} + Ph_{3}P_{O} \stackrel{\overset{\oplus}{\bigvee}}{\underset{C}{\overset{\oplus}{\bigcap}}} CO$$

$$(8)$$

formation of HPPh₃⁺ according to eqn. (8) appears entirely plausible, the more pertinent question concerns the origin of the free PPh₃. Our observations do not identify which intermediate(s) undergo loss of phosphine. The formation of the free phosphine indicates that decomposition of one tungsten species has occurred, but the problem is compounded by the subsequent reactivity. Since the protonation of the phosphine consumes a proton, it removes a second tungsten species from the functioning catalytic cycle.

As noted above, the decline in the concentration of the ketone complex during the catalysis is accompanied by the appearance of trans-[CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺. This alcohol complex is produced as the predominant product (94%) when a CD₂Cl₂ solution of [CpW(CO)₂(PPh₃)(Et₂C=O)]⁺ (29 mM) is reacted with 65 atm (950 psi) hydrogen at 22 °C in the presence of Et₂CO (5 equivalents) for 17 hours. This reaction gives 1.3 turnovers, indicating that the higher pressure of hydrogen accelerates the catalysis, but only by about a factor of three. We found earlier that the rate of hydride transfer from trans-Cp(CO)₂(PCy₃)MoH to Ph₃C⁺BF₄⁻ was much faster than that from the isomeric cis-Cp(CO)₂(PCy₃)MoH.¹⁰ The observation of the trans alcohol complex under catalytic conditions indicates that the alcohol binds to the metal at the site from which the hydride was transferred, without loss of stereochemistry at the metal center. In our earlier studies of stoichiometric hydrogenation of ketones using HOTf and Cp(CO)₃WH, it was recognized that there must be some W-O bond formation in the transition state, prior to complete W-H bond rupture.15,16

The availability of both cis and trans isomers of the alcohol complex [CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺ invites a comparison of their spectroscopic characteristics. The two isomers are readily distinguished by ¹H, ¹³C or ³¹P NMR. The methyl resonances of the Et₂CHOH ligand of cis-[CpW(CO)₂(PPh₃)-(Et₂CHOH)]⁺ are non-equivalent in the both the ¹H and ¹³C NMR spectra, while they are equivalent in the trans isomer. The chemical shifts of the OH resonances are of particular interest. The OH resonance of trans-[CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺ is a doublet ($J_{\rm HH}$ = 8.4 Hz) at δ 5.59. In contrast, the chemical shift of the OH of cis-[CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺ BAr'₄⁻ appears at δ 0.10, with couplings to both CH (J_{HH} = 8.2 Hz) and P ($J_{PH} = 2.9$ Hz). Similar coupling constants but an even more upfield chemical shift (δ -0.62) were found for the OH resonance of the molybdenum alcohol complex cis-[CpMo(CO)2-(PPh₃)(Et₂CHOH)]⁺ BAr'₄⁻. The chemical shifts of alcohol complexes can be strongly influenced by hydrogen bonding of the OH. In our studies of alcohol complexes synthesized by stoichiometric ionic hydrogenations of ketones, we found that the OH resonance of [CpW(CO)₃(Me₂CHOH)]⁺BAr'₄ appears at δ 2.41, while [CpW(CO)₃(Me₂CHOH)]⁺OTf exhibits a resonance for its OH at δ 7.34. ¹⁶ The triflate complex was shown by X-ray crystallography to have strong hydrogen bonding of the OH with an oxygen of the triflate anion, and the downfield shift of the OH in the triflate complex suggests hydrogen bonding is maintained in solution. But addition of

acetone to a solution of $[CpW(CO)_3(Me_2CHOH)]^+BAr'_4^-$ caused its OH resonance to shift downfield to δ 6.74, suggesting that acetone was serving as a hydrogen bond acceptor in an O–H · · · O hydrogen bond. A plausible explanation for the different chemical shifts of the OH protons of the *cis* and *trans* alcohol complexes is that hydrogen bonding to free ketone is occurring in *trans*- $[CpW(CO)_2(PPh_3)(Et_2CHOH)]^+$ and other *trans* alcohol complexes, which are observed during the hydrogenations, with excess ketone present. In contrast, the spectra for the *cis* alcohol complexes are recorded on isolated samples with no ketone present to serve as a hydrogen bond acceptor.

When isolated *cis*-[CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺ was used as a catalyst precursor for the hydrogenation of Et₂CO, the alcohol complex was promptly converted to the ketone complex *cis*-[CpW(CO)₂(PPh₃)(Et₂C=O)]⁺, with <3% of the alcohol complex remaining after 15 minutes. As the hydrogenation proceeds, the *trans* alcohol complex *trans*-[CpW(CO)₂(PPh₃)-(Et₂CHOH)]⁺ forms. This *trans* alcohol complex exists in the presence of ketone, and has a much higher kinetic stability towards displacement by ketone, compared to the *cis* alcohol complex.

Catalysis of ketone hydrogenation using the analogous Mo–PPh₃ complex enabled a comparison of W and Mo complexes under the same conditions. Catalysis by the Mo complex [CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺BAr'₄⁻ produces 3 turnovers in the first day (Fig. 2), which is significantly faster than that observed with the W analog. The time progression of the metal complexes observed during catalysis is similar in this Mo case to the W example discussed above, with *trans*-[CpMo(CO)₂-(PPh₃)(Et₂CHOH)]⁺BAr'₄⁻ becoming the major Mo species as the catalysis proceeds.

An alternative catalyst precursor was shown to produce catalysis comparable to that described above from the isolated ketone complex [CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺BAr'₄⁻. We reported that hydride transfer from CpMo(CO)₂(PPh₃)H to Ph₃C⁺BAr'₄⁻ produces a complex with an η³-PPh₃ ligand, in which one C=C bond of the arene ring is coordinated to the molybdenum.²⁸ Use of this complex as a catalyst precursor for ketone hydrogenations was successful, and NMR spectra indicated that the ketone readily displaced the C=C bond, producing *cis*-[CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺BAr'₄⁻ (eqn. (9)).

$$OC \xrightarrow{\downarrow 0} PDh_3$$

Along with modifying the phosphine ligand bonded to the metal, we briefly examined the effect of changing from an unsubstituted Cp ligand to the more bulky and more electron-donating C_5Me_5 (Cp*) ligand. Hydride transfer from Cp*-Mo(CO)₂(PPh₃)H to Ph₃C⁺BAr'₄⁻ in the presence of Et₂CO produced evidence for the formation of a ketone complex analogous to that found in the Cp example. Surprisingly, however, negligible hydrogenation of Et₂C=O was observed at <4 atm H₂ at 23 °C.

Catalytic hydrogenations with Mo and W complexes with PCy₃ and PMe₃ ligands

Hydride transfer from Cp(CO)₂(PCy₃)MoH to Ph₃C⁺BAr'₄⁻ in CD₂Cl₂ in the presence of Et₂C=O gave a single Mo product, as evidenced by ¹H and ³¹P NMR spectra. Resonances for Et₂C=O were broadened in the ¹H NMR, suggesting exchange of free and bound ketone, and the ketone complex [CpMo(CO)₂-(PCy₃)(Et₂C=O)]⁺ was not isolated. Hydride abstraction from Cp(CO)₂(PCy₃)MoH (10 mM) in the presence of a large excess (100 equiv.) of Et₂C=O was carried out, and H₂ (<4 atm) was

added. Hydrogenation of the ketone occurred at 23 °C, giving 18 turnovers after 5 hours, and increasing to 28 turnovers in 20 hours. Although this Mo complex produces the most active hydrogenation catalyst of the series we have examined here, it decomposes as the reaction proceeds. The formation of HPCy₃⁺ as a decomposition product was verified by ³¹P NMR. This product accounted for about 65% of the total integrated ³¹P NMR intensities after 20 hours. The rate of hydrogenation decreases as the reaction proceeds, offering evidence that decomposition products play little or no role in the catalysis.

When hydrogenation of Et₂C=O was carried out under our standard conditions (30 mM Mo, 300 mM ketone) enabling comparisons to other catalysts (Fig. 2), Cp(CO)₂(PCy₃)MoH/Ph₃C⁺BAr'₄ produced about 6 turnovers in the first 4 hours. Monitoring the progress of the reaction by NMR provided evidence for the formation of the alcohol complex [CpMo-(CO)₂(PCy₃)(Et₂CHOH)]⁺ but this complex was not isolated for definitive characterization.

The use of other counter ions was studied qualitatively for catalysis with the Mo-PCy₃ system. We previously prepared cis-Cp(CO)₂(PCy₃)MoFBF₃ in our study of the kinetics of hydride transfer. When excess Et₂C=O is added to this complex, displacement of the weakly bound BF₄ ligand occurs, and hydrogenation of the ketone occurs at room temperature under H₂ (<4 atm). The formation of HPCy₃⁺ was observed as a decomposition product in this example as well, and this catalytic reaction was not studied in detail. Hydride transfer to Ph₃C⁺PF₆⁻ from Cp(CO)₂(PCy₃)MoH in the presence of excess Et₂C=O also gave evidence for a ketone complex, and hydrogenation of Et₂C=O occurred at room temperature. Along with the formation of HPCy₃⁺ as a decomposition product, other unidentified 31P NMR resonances were observed that may be due to decomposition of the PF₆⁻ counter ion. Very slow catalysis of ketone hydrogenation was observed using Cp(CO)₂-(PCy₃)MoOTf at <4 atm H₂. Apparently the triflate anion is coordinated too strongly to Mo to provide significant catalytic activity under the mild conditions used for the reactions with BAr'_4 , BF_4 and PF_6 anions.

The reactivity of the W complex with a PCy, ligand provided an informative contrast to the Mo analog. Following hydride transfer from $Cp(CO)_2(PCy_3)WH$ to $Ph_3C^+BAr'_4^-$, no definitive evidence was obtained for the bound ketone complex [CpW(CO)₂(PCy₃)(Et₂C=O)]⁺. The NMR data do not distinguish between several possible products, such as a fluxional ketone complex, or a complex of constitution [CpW(CO)2-(PCy₃)]⁺, possibly with an agostic interaction with a CH bond of the phosphine ligand. An agostic interaction involving a CH of one PCy3 ligand was shown by X-ray crystallography for W(CO)₃(PCy₃)₂,²⁹ and kinetics studies by Hoff and co-workers provide evidence for a role of this agostic interaction in ligand substitution reactions.30 Further study would be required to identify the initial product found in our studies, but the focus of our current efforts is on the reactivity under catalytic conditions. When hydrogen is added to the solution under our standard conditions (Fig. 2), hydrogenation of the ketone occurs, with 3 turnovers occurring after 8 days. This W-PCy₃ complex produces a slower catalyst than the Mo-PCy3 complex, similar to the trend found in the comparison of W vs. Mo for the PPh₃ ligands. Also the increase in reactivity observed upon changing from PPh, to PCy, is less pronounced for the W case than for the Mo example. The most conspicuous difference is found in the metal-containing complexes observed during the progress of the catalytic reaction. The dihydride 31 [CpW(CO)2-(PCy₃)(H)₂]⁺BAr'₄⁻ is observed as the predominant tungsten complex during the reaction, differing from the other examples discussed above where ketone and alcohol complexes persisted during the catalysis.

Hydrogenation of Et₂C=O is catalyzed by [CpMo(CO)₂-(PMe₃)(Et₂C=O)]⁺BAr'₄⁻ (Fig. 2) but the reaction is much slower (2 turnovers in 8 days) than that observed for the Mo

catalysts with PPh₃ or PCy₃ ligands. *cis* and *trans* isomers of the ketone complex were the dominant species observed during the catalysis, though other ³¹P resonances appeared later in the reaction that may be due to the alcohol complex. Use of the tungsten analog, [CpW(CO)₂(PMe₃)(Et₂C=O)]⁺BAr'₄⁻, gave even slower reactivity, with only 2.3 turnovers being found after 16 days. The phosphonium compound HPMe₃⁺ was observed as a decomposition product in both the Mo and W cases, but in much smaller amounts compared to the catalytic runs with PPh₃ and PCy₃.

Mechanistic considerations

Scheme 1 shows the proposed mechanism for the catalytic ionic

$$\begin{array}{c} \oplus\\ M\\ O=C\\ R\\ H\\ \end{array}$$

$$\begin{array}{c} H_2\\ \oplus\\ H\\ \end{array}$$

$$\begin{array}{c} H_2\\ \oplus\\ M\\ \end{array}$$

$$\begin{array}{c} H_2\\ \oplus\\ M\\ \end{array}$$

$$\begin{array}{c} H\\ H\\ \end{array}$$

$$\begin{array}{c} Dihydride\\ regeneration \end{array}$$

$$\begin{array}{c} Proton\\ transfer\\ H\\ \end{array}$$

$$\begin{array}{c} H\\ H\\ \end{array}$$

hydrogenation of ketones catalyzed by molybdenum and tungsten complexes [CpM(CO)₂(PR₃)(Et₂C=O)]⁺BAr'₄⁻. Starting from the catalyst precursor ketone complexes, displacement of the coordinated ketone by hydrogen is required to produce the cationic metal dihydride (eqn. (10)). For most of the systems

studied here the ketone complexes [CpM(CO)₂(PR₃)(Et₂C=O)]⁺ are observed during the catalytic reaction as monitored by NMR (and later in the reaction the alcohol complexes). Thus conversion of the ketone or alcohol complex to the dihydride is the turnover-limiting step of the catalytic cycle in most cases.

A complete determination of the dependence of the catalytic rate on hydrogen pressure has not been made, but as noted above a comparison of the amount of hydrogenation of Et₂C=O by [CpW(CO)₂(PPh₃)(Et₂C=O)]⁺ under <4 atm H₂ compared to 65 atm H₂ shows that the higher pressure makes it only about three times faster. This suggests that the rate of catalysis is not strongly dependent on [H₂] under these conditions, and that the mechanism for displacement of the ketone by H₂ is largely dissociative. Factors that promote dissociation of the ketone or alcohol from the metal are expected to enhance the rate of conversion to the dihydride, and this is proposed as the primary explanation for complexes with PCy₃ ligands producing faster catalysts than those with the smaller phosphines PPh₃ and

PMe₃. The rate of these catalytic reactions increases with increasing size of the phosphines, based on the steric measure of cone angles 32 (θ), with PCy₃ ($\theta=170^{\circ}$) > PPh₃ ($\theta=145^{\circ}$) > PMe₃ ($\theta=118^{\circ}$). An important mechanistic distinction between the traditional catalysts (eqn. (1)) and our ionic hydrogenation catalysts concerns coordination of the ketone. In the conventional mechanism, ketone coordination is required, and insertion of the ketone into the M–H bond forms the C–H bond. Ketone binding is observed in most of our cases, but is not required for the hydrogenation to proceed. Dissociation of the ketone is the slow step, since displacement of the ketone by H₂ is necessary to form the dihydride complex that carries out the hydrogenation. The proton and hydride transfer from the M–H bonds occurs to free rather than bound ketone in our catalytic reactions.

The catalytic experiments were carried out using [CpW-(CO)₂(PPh₃)(Et₂C=O)]⁺ under H₂ with excess ketone added, but the existence of the equilibrium shown in eqn. (10) was verified from a reaction of [CpW(CO)₂(PPh₃)(Et₂C=O)]⁺ with hydrogen (<4 atm H₂) in the absence of added ketone. After 2 hours, 40% of the ketone complex had been converted to the dihydride $[CpW(CO)_2(PPh_3)(H)_2]^+$. At t = 18 hours, about 85% conversion to the dihydride was found, giving an apparent $K_{eq} \approx$ 2 for eqn. (10). By the time this spectrum was recorded, however, some hydrogenation of the ketone had occurred, as expected. The equilibrium is established very slowly, contributing to the slow rate of catalysis, which requires the formation of the dihydride complex. Although a reliable value of K_{eq} was not determined from these experiments, the observation of the formation of the dihydride documents the viability of this step as a part of the catalytic cycle. Since alcohol complexes are formed as the catalysis proceeds, displacement of the alcohol ligands by H₂ is also required to maintain the catalysis. A solution of cis-[CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺ placed under H₂ at 22 °C was also shown to release the free alcohol and produce the dihydride [CpW(CO)₂(PPh₃)(H)₂]⁺.

The tungsten dihydrides $[CpW(CO)_2(PR_3)(H)_2]^+$ were all previously synthesized (R = Me, Ph, Cy) by protonation of the neutral hydrides $CpW(CO)_2(PR_3)H$.³¹ The dihydrides can be isolated, and were fully characterized, including a crystal structure for $[CpW(CO)_2(PMe_3)(H)_2]^+OTf^-$. Even though they are dihydrides in their stable form, this does not preclude η^2 -H₂ dihydrogen complexes ³³ as intermediates in the formation of the dihydrides. Norton and co-workers recently studied the kinetics of protonation of $CpW(CO)_2(PMe_3)H$, and found that protonation of the W–H bond to produce $[CpW(CO)_2(PMe_3)-(\eta^2-H_2)]^+$ is faster than protonation of the metal to give the dihydride directly.³⁴ Analogous dihydrogen complexes could be unobserved intermediates in the formation of the dihydrides from the reactions of the ketone (and alcohol) complexes with H₂.

While the steric properties of the phosphines are a major factor influencing the rates, the thermodynamics are also important. Third row metals tend to form stronger bonds to hydrogen (and other ligands) than second row metals; for $Cp(CO)_3MH$ the M–H bond is about 3 kcal mol^{-1} stronger for M=W than for $M=Mo,^{35}$ so the increased stability of the tungsten dihydrides is not surprising. The dihydrides are known for the tungsten complexes but have not been observed for molybdenum. It is possible that the molybdenum complexes form dihydrogen complexes rather than dihydrides that are active (but unobserved) in the catalytic cycle. Whether a dihydride or a dihydrogen complex is formed is not critically important, as long as the form that exists under catalytic conditions has sufficient acidity to enable the required proton transfer to the ketone.

Once the dihydride complex is formed, the next step in the hydrogenation mechanism is proton transfer to the ketone. Evidence for the viability of this proton transfer step comes from eqn. (11), where Et₂C=O is stoichiometrically hydrogen-

ated by [CpW(CO)₂(PMe₃)(H)₂]⁺BAr'₄⁻, through proton transfer from the dihydride and hydride transfer from the neutral metal hydride. This reaction is 90% complete in 1 hour, and produces the *trans* alcohol complex. Ketone protonation presumably occurs by a direct tungsten-to-oxygen proton transfer. This may also be true in hydrogenations of aldehydes and ketones that we previously reported using [CpW(CO)₂(PMe₃)-(H)₂]⁺OTf⁻.¹⁶ In the case of the hydrogenations by dihydrides with the OTf⁻ counter ion, however, there exists the alternative possibility that the proton transfer is mediated by OTf⁻ as a kinetically competent proton carrier. Darensbourg and coworkers found that chloride and other anions can mediate proton transfers from cationic dihydrides and thereby influence the rates of proton transfer.³⁶

In contrast to the resting state of the catalyst being the ketone and alcohol complexes for most cases, the reactions carried out starting with Cp(CO)₂(PCy₃)WH show the dihydride [CpW(CO)₂(PCy₃)(H)₂]⁺ as the predominant metal complex. In this case, the proton transfer step is slow and becomes turnoverlimiting. The slower rate here, compared to the W-PPh₃ complex, may be due to steric hindrance in the transition state for proton transfer from [CpW(CO)₂(PCy₃)(H)₂]⁺ to the ketone, with the bulky PCy₃ ligand impeding approach of the ketone. The PMe₃ dihydride [CpW(CO)₂(PMe₃)(H)₂]⁺BAr'₄⁻, with a PMe₃ ligand that is similar to PCy₃ electronically but very different sterically, is faster at proton transfer. A related thermodynamic issue affecting the relative stability of the ketone complex vs. the dihydride in the PCy3 case may be the destabilization of bonding of the ketone to the metal, again owing to the size of the PCy3 ligand. The small size of two hydride ligands allows them to bond to tungsten with less hindrance from the bulky PCy₃ ligand.

The kinetics and thermodynamics of proton transfer from metal hydrides are well documented.8 Cationic metal dihydrides and dihydrogen complexes can be especially acidic;³³ a dicationic dihydrogen complex studied by Morris and co-workers was shown to be more acidic than HOTf.37 Norton and coworkers reported a p K_a of 5.6 for $[CpW(CO)_2(PMe_3)(H)_2]^+$ in CH₃CN. Protonated acetone in CH₃CN is reported to have pK_a $\approx -0.1^{38,39}$ These values lead to the conclusion that the proton transfer from metal to oxygen of the ketone in our reactions is thermodynamically uphill. This analysis assumes that the relative pK_a values are not greatly different in our solvent CD_2Cl_2 , compared to the CH_3CN in which these pK_a measurements were made. Stoichiometric hydrogenations of ketones by [CpW(CO)₂(PMe₃)(H)₂]⁺ proceed smoothly when carried out in CD₃CN, supporting the contention that the change in solvent will not invalidate any of these conclusions. Proton transfers from the dihydride [CpW(CO)₂(PMe₃)(H)₂]⁺ as the proton source are likely less favorable thermodynamically compared to those from the PPh₃ analog. The dihydride [CpW(CO)₂(PPh₃)- $(H)_2$ ⁺ is presumably more acidic, based on trends in p K_a values of neutral metal hydrides when electronic properties of ligands are changed.8 Similarly, we assume that the unobserved Mo dihydride [CpMo(CO)₂(PMe₃)(H)₂]⁺ is more acidic than the W analog. This is also in accord with observed trends in acidities as metals are varied; Cp(CO)₃MoH is a stronger acid than $Cp(CO)_3WH$ thermodynamically (p $K_a = 13.9$ in CH_3CN for $Cp(CO)_3MoH$; $pK_a = 16.1$ in CH_3CN for $Cp(CO)_3WH$). ⁴⁰ The rates follow the same order as the thermodynamics, with the kinetics of proton transfer to aniline from Cp(CO)₃MoH being faster than from Cp(CO)₃WH.⁴¹

The unfavorable equilibrium for proton transfer from the dihydride to the ketone does not prevent the reaction from proceeding since the hydride transfer from the neutral metal hydride to the protonated ketone is fast. Metal hydrides have long been known to be capable of undergoing cleavage of the M–H bond as a hydride. We reported the kinetics of hydride transfer from a series of metal carbonyl hydrides to $\rm Ph_3C^+BF_4^-$ in $\rm CH_2Cl_2,^{10,11}$ and found that the rate constants for the kinetic hydricity span a range of over $\rm 10^6$ (eqn. (12)). The second-order

$$M-H + Ph_3C^+BF_4^- \xrightarrow{k_{H^-}} M-FBF_3 + Ph_3C-H$$
 (12)

rate constant at 25 °C for hydride transfer to $Ph_3C^+BF_4^-$ from $Cp(CO)_3MoH$ was $k_{H^-} = 3.8 \times 10^2 \, M^{-1} \, s^{-1}$, compared to $k_{H^-} = 7.6 \times 10^1 \, M^{-1} \, s^{-1}$ for $Cp(CO)_3WH$. It is thus reasonable to expect the Mo complexes postulated in Scheme 1 to be both faster proton donors as well as faster hydride donors in comparison to the corresponding W complexes. These steps may not have a direct influence on the turnover rate of the catalytic cycle, however, since the turnover-limiting step in most cases is displacement of the ketone/alcohol ligand by H_3 .

Substitution of one CO ligand by a phosphine dramatically increases the kinetic hydricity (eqn. (12)): $k_{\rm H-} = 4.3 \times 10^5 \, {\rm M}^{-1} \, {\rm s}^{-1}$ for trans-Cp(CO)₂(PCy₃)MoH, $k_{\rm H_-} = 5.7 \times 10^5 \,\rm M^{-1} \, s^{-1}$ for trans-Cp(CO)₂(PPh₃)MoH, and $k_{\rm H_-} = 4.6 \times 10^6 \,\rm M^{-1} \, s^{-1}$ for trans-Cp(CO)₂(PMe₃)MoH.¹⁰ The electronic effect is as expected, with the electron-donating phosphine ligands making the metal hydride more hydridic. The observation that electronic effects predominate over steric influences certainly favors using these metal hydrides as hydride donors. Even the metal hydride with the most bulky phosphine, Cp(CO)₂(PCy₃)MoH has a rate constant for hydride transfer that is about three orders of magnitude faster than that for Cp(CO)₃MoH. Our measurements for hydride transfer used Ph₃C⁺ as the hydride acceptor, whereas the hydrogenations in the catalytic reactions involve a protonated ketone as the hydride acceptor. The rate constant for hydride transfer from Cp(CO)₂(PPh₃)MoH to protonated acetone was reported to be $1.2 \times 10^4 \,\mathrm{M^{-1}\ s^{-1}}$ in $\mathrm{CH_3CN}$. It was concluded that hydride transfer from Cp(CO)₂(PPh₃)MoH to protonated acetone proceeds by a single-step hydride transfer ³⁹ rather than the alternative mechanism involving an electron transfer followed by hydrogen atom transfer. Evidence for a single-step hydride transfer was also presented ¹⁰ for hydride transfers to Ph₃C⁺BF₄⁻, providing another similarity between these two types of hydride transfer reactions. Consideration of all of these hydride transfer kinetics indicates that the hydride transfer reactions producing alcohol in our reactions (Scheme 1) are sufficiently fast to overcome the unfavorable thermodynamics of the proton transfer step.

Although no molybdenum dihydrides have been directly observed, the involvement of molybdenum ketone complexes in the heterolytic cleavage of H₂ has been demonstrated. Addition of H₂ (<4 atm) to a CD₂Cl₂ solution containing the ketone complex [CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺BAr'₄⁻ and the hindered amine base 2,6-di-*tert*-butyl-4-methylpyridine gave the neutral molybdenum hydride in 81% yield in 5 minutes (eqn. (13)). This could proceed through formation of the

$$O^{C} \xrightarrow{M_{0}-O} C \xrightarrow{Et} + M_{0} \xrightarrow{H_{2}} C_{P(CO)_{2}(PPh_{3})M_{0}-H} + C_{Et} \xrightarrow{C} Et + M_{0} \xrightarrow{H_{2}} C_{P(CO)_{2}(PPh_{3})M_{0}-H}$$

$$(13)$$

unobserved molybdenum dihydride $[CpMo(CO)_2(PPh_3)(H)_2]^+$ (or dihydrogen complex $[CpMo(CO)_2(PPh_3)(\eta^2-H_2)]^+$), followed by intermolecular deprotonation by the amine base. An alternative mechanism to consider for this reaction would involve an intermediate or transition state having a $Mo\cdots H\cdots H\cdots N$ interaction. Numerous examples of $M-H\cdots H-N$ interactions have been discovered since 1994, with examples involving iridium being particularly prevalent. Interactions of this type can be involved in the base-promoted heterolytic cleavage of hydrogen. This unconventional bonding to hydrogen involving protic and hydridic hydrogens has been called a dihydrogen bond, and recent reviews of this topic have been published.

Comparison with other hydrogenation catalysts

Most of the ketone hydrogenation catalysts previously reported use expensive metals such as Rh and Ru. In contrast, our method uses molybdenum and tungsten, which are much less expensive. Costs of metal starting materials fluctuate, but precious metals like Rh can be orders of magnitude more expensive than Mo or W. The cost of the metal is one of many issues that can affect the overall economics of conducting hydrogenation on an industrial scale; specialized ligands can also add substantially to the cost of the catalyst.

The advantage of inexpensive metals must be balanced against the activity obtained. At this early stage of development, the catalysts described here are orders of magnitude less reactive than the ruthenium catalysts reported by Noyori and co-workers.^{5,6} Our efforts thus far have focused on the rational design of catalytic systems that could be demonstrated to hydrogenate ketones under mild conditions of temperature and pressure. The results described here provide evidence for the viability of unconventional mechanisms for catalytic hydrogenations. It is expected that further studies may ultimately lead to the design of more efficient catalysts, based on the mechanistic understanding gained thus far.

While homogeneous catalysis of ketone hydrogenation is dominated by the use of ruthenium and rhodium complexes, there is some precedent for the use of chromium, molybdenum and tungsten. Darensbourg and co-workers extensively developed the chemistry of anionic metal carbonyl hydrides such as HCr(CO)₅, with an emphasis on hydride transfer reactivity of these complexes.⁴⁵ Stoichiometric hydrogenations of aldehydes and ketones were accomplished 46 using acids together with metal hydrides such as $HM(CO)_5^-(M=Cr,W)$ and phosphitesubstituted derivatives like HW(CO)₄[P(OMe)₃]⁻. In the case of reactive aldehydes like benzaldehyde, insertion of the aldehyde into the M-H bond to give a metal alkoxide was observed, and the alcohol was released by addition of acetic acid. In contrast, they found that hydrogenation of ketones required acid addition first to activate the carbonyl towards nucleophilic attack by the metal hydride. Catalytic hydrogenation of cyclohexanone was accomplished using (CO)₅W(OAc)⁻ at 125 °C and 600 psi H₂.⁴⁷ The mechanism proposed for these hydrogenations involved conversion of (CO)5W(OAc) to the hydride (CO)5-WH⁻. Then insertion of the aldehyde or ketone into the M-H bond would produce an anionic alkoxide that could be cleaved by HOAc to produce the alcohol product and regenerate the (CO)₅W(OAc)⁻. A related catalyst for hydrogenation of acetophenone was produced by reaction of $M(CO)_6$ (M = Cr, Mo, W) with NaOMe in methanol. 48 Reaction conditions of 70 °C and 1450 psi H₂ pressure were used for the Mo case, with higher temperatures (100-120 °C) being required for catalysts starting from Cr(CO)₆ or W(CO)₆. In this case also the intermediacy of HM(CO)₅⁻ and anionic metal alkoxide intermediates were

Brunet and co-workers reported recent developments in the use of the anionic metal carbonyl hydride $HCr(CO)_5^-$ as a *transfer* hydrogenation catalyst.⁴⁹ In their experiments, 20%

KHCr(CO)₅ was used with HCO₂H–NEt₃ to catalyze the hydrogenation of ketones at room temperature. The metal hydride HCr(CO)_5^- is regenerated in this reaction through decarboxylation of $[\text{HCO}_2\text{Cr(CO)}_5]^-$.

Noyori and co-workers developed a family of remarkably reactive ruthenium catalysts for the asymmetric transfer hydrogenation of ketones under mild conditions.⁵ These transfer hydrogenations use isopropanol or formic acid as the hydrogen source, and provide very high turnover numbers of the catalyst and enantiomeric purity of the alcohol products. The mechanism of these metal–ligand bifunctional catalysts has been studied experimentally and by theoretical studies.⁵⁰ Eqn. (14) shows

the preparation of a ruthenium hydride complex through reaction with isopropanol; Scheme 2 shows the computed transition

Scheme 2

state for the hydrogenation of an aldehyde. A key issue in the hydrogenation was found to be hydrogen bonding of the oxygen of the substrate to the amine NH bond; this activation of the carbonyl substrate, in conjunction with the hydricity of the Ru-H bond, results in the smooth hydrogenation of the C=O bond. A key mechanistic issue relevant to our studies on Mo and W complexes is that the ruthenium complex is an 18electron complex that has no vacant coordination site. This case, like our ionic hydrogenations, does not require binding of the ketone to the metal but requires a metal complex capable of delivering hydrogen to the unsaturated substrate. Andersson and co-workers reported highly enantioselective transfer hydrogenation catalysts based on ruthenium(arene)(amino alcohol) complexes,51 and a computational study supported a sixmembered transition state, with concerted transfer of H- from the metal and H⁺ from the NH bond.⁵²

Asymmetric catalytic hydrogenations have also been accomplished starting from chiral $RuCl_2(diphosphine)(1,2-diamine)$ complexes as catalyst precursors, with activation being achieved by addition of a strong base like $KO^tBu.^6$ These catalysts also appear to involve a mechanism similar to that described above for the (arene)ruthenium complexes. Morris and co-workers also discovered ruthenium(diphosphine)(1,2-diamine) complexes that exhibit exceptionally high reactivity for ketone hydrogenations using H_2 .⁵³

Shvo and co-workers reported a novel type of ruthenium complex that was shown to catalyze hydrogenation of ketones, aldehydes, alkenes and alkynes.⁵⁴ The hydrogenation of ketones was carried out at 145 °C at 500 psi H₂. The bimetallic catalyst precursor is bridged both by a bridging hydride as well as through the phenyl-substituted cyclopentadienone ligands. Under hydrogen pressure, a mononuclear ruthenium active species is formed (eqn. (15)). Recent mechanistic experiments

by Casey and co-workers provide evidence for the *concerted* delivery of H⁺ from the OH site from the hydroxycyclopentadienyl ligand, and H⁻ from the RuH.⁵⁵ Eqn. (16) depicts the mechanism for this polar hydrogenation of an aldehyde.

The hydrogenations from the different ruthenium systems above are all thought to proceed through concerted delivery of a proton (from an NH or OH site) and a hydride (from a metal hydride). This *concerted* mechanism contrasts with our ionic hydrogenation system, where *sequential* proton transfer and hydride transfer steps are proposed. All of these cases are distinct from traditional mechanisms where coordination of the ketone or other substrate is required. These new types of catalysts are generally coordinatively saturated, 18-electron complexes that have no readily accessible vacant site for binding of a ketone.

The mechanism of stepwise proton and hydride transfers operative in our catalytic ketone hydrogenations is similar to the mechanism proposed by Magee and Norton for hydrogenation of C=N double bonds using a ruthenium catalyst (eqn. (17)).⁵⁶ They found that enantioface selective catalytic hydrogenation of the C=N bonds of iminium cations could be accomplished using a ruthenium hydride with chiral diphosphine ligands. In our catalysts, displacement of the ketone by H₂ was usually the slow step of the catalytic cycle. In contrast, hydride transfer was the turnover-limiting and enantioselectivity-determining step in eqn. (17).

$$H_2$$
 (50–55 psi) + Ph $CpRu(P-P)H$ H H H H H H

We also discovered a ruthenium catalyst that carries out the ionic hydrogenation of ketones.⁵⁷ The bimetallic ruthenium complex with a bridging hydride, {[CpRu(CO)₂]₂(µ-H)}⁺OTf⁻, catalyzes the selective deoxygenation of 1,2-propanediol to *n*-propanol in the presence of added acid. The mechanism of the deoxygenation of diols involves generation of an aldehyde as an

observable intermediate, and this aldehyde is hydrogenated under the reaction conditions. Ketones were hydrogenated by $\{[CpRu(CO)_2]_2(\mu\text{-}H)\}^+OTf^-$ in the absence of added acid. These hydrogenations were proposed to proceed through the highly acidic dihydrogen complex $[Cp*Ru(CO)_2(\eta^2\text{-}H_2)]^+$ generated from $\{[CpRu(CO)_2]_2(\mu\text{-}H)\}^+OTf^-$ under the reaction conditions.

Experimental

General

All manipulations were carried out under an atmosphere of argon using Schlenk or vacuum-line techniques, or in a Vacuum Atmospheres drybox. 1H NMR chemical shifts were referenced to the residual proton peak of CD₂Cl₂ at δ 5.32. Elemental Analyses were carried out by Schwarzkopf Microanalytical Laboratory (Woodside, NY). NMR spectra were recorded on a Bruker AM-300 spectrometer (300 MHz for 1H). IR spectra were recorded on a Mattson Polaris FT-IR. Et₂O and hexane were distilled from Na–benzophenone, and CH₂Cl₂ was distilled from P₂O₅. Cp(CO)₂(PPh₃)WH, 58,59 Cp(CO)₂(PPh₃)-MoH, 58 Cp(CO)₂(PCy₃)WH, 31 Cp(CO)₂(PCy₃)MoH, 10 Cp(CO)₂(PMe₃)WH, 59 Cp(CO)₂(PMe₃)MoH, 59 Cp

Syntheses

Synthesis of cis-[CpW(CO)₂(PPh₃)(Et₂C=O)]⁺BAr'₄⁻. Ph₃C⁺- BAr'_{4} (288.5 mg, 0.26 mmol) and Et₂CO (100 μ L, 0.95 mmol) were combined in a flask. CH₂Cl₂ (8 mL) was added, giving a yellow solution. Addition of CpW(CO)₂(PPh₃)H (148.5 mg, 0.26 mmol) caused the solution to become red-orange. After 5 minutes of stirring, hexane (30 mL) was slowly added until the solution became cloudy and a reddish-orange oil precipitated. Upon standing at room temperature, the oil solidified into small microcrystals within a few minutes. This orange solid was collected by filtration, and washed with hexane $(3 \times 5 \text{ mL})$. Yield 354 mg (0.23 mmol, 88%). 1 H NMR (CD₂Cl₂: δ 7.73 (br, 8H, o-H), 7.57 (br, 4H, p-H), 7.25-7.31, 7.50-7.54 (m, 15H, PPh₃), 5.76 (s, 5H, Cp), 2.20 (dq, J_{HH} = 18.2 Hz, 7.3 Hz, 2H, CH₂), 1.59 (dq, J_{HH} = 18.2 Hz, 7.3 Hz, 2H, CH₂), 0.73 (t, J_{HH} = 7.3 Hz, 6H, CH₃). ³¹P NMR (CD₂Cl₂): δ 37.1 (s, ¹ J_{PW} = 277 Hz). ¹³C ¹H NMR (CD₂Cl₂): δ 240.1 (d, ² J_{PC} = 6 Hz, CO trans to P); 239.7 (d, ${}^{2}J_{PC}$ = 21 Hz, CO cis to P), 236.2 (s, Et₂C=O), 162.2 (1:1:1:1 quartet, $J_{CB} = 50$ Hz, *ipso-C* of BAr'₄-), 135.2 (s, *ortho-C* of BAr'₄-), 134.1 (d, ${}^{2}J_{PC} = 11$ Hz, *ortho-C* of PPh₃), 132.6 (d, ${}^{4}J_{PC} = 2$ Hz, para-C of PPh₃), 130.0 (d, ${}^{3}J_{PC} = 10$ Hz, meta-C of PPh₃), 129.6 (d, ${}^{1}J_{PC} = 49 \text{ Hz}$, ipso-C of PPh₃), 129.3 (q, ${}^{2}J_{CF} = 29 \text{ Hz}$, meta-C of BAr'₄"), 125.0 (q, ${}^{1}J_{CF} = 272 \text{ Hz}$, CF_{3}), 117.9 (br s, para-C of BAr'₄"), 95.9 (s, Cp), 37.0 (s, CH₂), 8.9 (s, CH₃). IR (CH₂Cl₂): v(CO) 1974 (vs), 1895 (s); v(C=O) 1632(w) cm⁻¹. Found: C, 48.95; H, 2.98. C₆₂H₄₂BF₂₄O₃PW requires C, 49.10; H, 2.79%.

Synthesis of *cis*-[CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺BAr'₄⁻. Ph₃-C⁺BAr'₄⁻ (249.0 mg, 0.225 mmol) and CpW(CO)₂(PPh₃)H (128.2 mg, 0.226 mmol) were combined in a 50 mL flask. CH₂Cl₂ (8 mL) was added, generating a dark red-orange solution. Et₂CHOH (49 μ L, 0.46 mmol) was added, and after 5 minutes of vigorous stirring, Et₂O (20 mL) was slowly added, followed by cyclohexane (20 mL), but no precipitate formed. Upon addition of heptane (5 mL), the reaction mixture became cloudy, and a red-orange precipitate began to appear. Additional heptane (5 mL) was added, and a red-orange solid was collected by filtration. Yield 304.4 mg (0.20 mmol, 89%). ¹H NMR (CD₂Cl₂): δ 7.74 (br, 8H, o-H), 7.56 (br, 4H, p-H), 7.27–7.34, 7.56–7.64 (m, PPh₃, 15H), 5.74 (s, 5H, Cp), 3.37 (m, CH, 1H), 0.83–1.20 (m, 4H, CH₂), 0.58 (t, J_{HH} = 7.4 Hz, 3H, CH₃),

0.40 (t, $J_{\rm HH}$ = 7.4 Hz, 3H, CH₃), 0.10 (dd, J = 8.2 Hz, 2.9 Hz, 1H, OH). ³¹P NMR (CD₂Cl₂): δ 41.0 (s, $^{1}J_{\rm PW}$ = 276 Hz). ¹³C{¹H} NMR (CD₂Cl₂): δ 241.6 (d, $^{2}J_{\rm PC}$ = 4 Hz, CO trans to P); 239.8 (d, $^{2}J_{\rm PC}$ = 21 Hz, CO cis to P), 162.2 (1 : 1 : 1 : 1 quartet, $J_{\rm CB}$ = 50 Hz ipso-C of BAr'₄⁻), 135.2 (s, ortho-C of BAr'₄⁻), 133.9 (d, $^{2}J_{\rm PC}$ = 11 Hz, ortho-C of PPh₃), 133.4 (d, $^{4}J_{\rm PC}$ = 2 Hz, para-C of PPh₃), 131.0 (d, $^{3}J_{\rm PC}$ = 10 Hz, meta-C of PPh₃), 129.3 (qm, $^{2}J_{\rm CF}$ = 31 Hz, meta-C of BAr'₄⁻), 127.8 (d, $^{1}J_{\rm PC}$ = 49 Hz, ipso-C of PPh₃), 125.0 (q, $^{1}J_{\rm CF}$ = 272 Hz, CF₃), 117.9 (septet, $^{3}J_{\rm CF}$ = 272 Hz, para-C of BAr'₄⁻), 94.8 (s, Cp), 93.6 (d, $^{3}J_{\rm CP}$ = 2 Hz, CHOH), 26.6 (s, CH₂), 26.6 (s, CH₂), 8.5 (s, CH₃), 8.1 (s, CH₃). IR (CH₂Cl₂): v(OH) 3433 (w, br); v(CO) 1974 (s), 1894 (s) cm⁻¹. Found: C, 49.04; H, 2.99. C₆₂H₄₄BF₂₄O₃PW requires C, 49.04; H, 2.92%.

trans-[CpW(CO)₂(PPh₃)(Et₂CHOH)]⁺BAr'₄⁻. *cis*-[CpW-(CO)₂(PPh₃)(Et₂C=O)]⁺BAr'₄⁻ (48.4 mg, 0.031 mmol) was dissolved in CD₂Cl₂ (1.1 mL) in a glass vial, and Et₂CO (16 μL, 0.15 mmol) was added. The solution was placed in a Parr high pressure reactor vessel and H₂ (65 atm) was added. After 17 hours at 22 °C, the pressure was released, and an NMR spectrum showed 92% conversion to *trans*-[CpW(CO)₂-(PPh₃)(Et₂CHOH)]⁺BAr'₄⁻, along with 8% of [CpW(CO)₂-(PPh₃)(Et₂C=O)]⁺ remaining. ¹H (CD₂Cl₂): δ 7.73 (br, 8H, o-H), 7.57 (br, 4H, p-H), 7.1–7.2, 7.43–7.56 (m, 15 H, PPh₃), 5.59 (d, J = 8.4 Hz, 1H, OH), 5.39 (d, J_{PH} = 2.4 Hz, 5H, Cp), 3.37 (m, CH, 1H), 1.35–1.55 (m, CH₂, 4H), 0.93 (t, J_{HH} = 7.5 Hz, 6H, CH₃). ³¹P NMR (CD₂Cl₂): δ 30.6 (s, ¹J_{PW} = 197 Hz).

Synthesis of [CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺BAr'₄⁻. Ph₃C⁺-BAr'₄ (224.0 mg, 0.202 mmol) and CpMo(CO)₂(PPh₃)H (99.2 mg, 0.206 mmol) were combined in a 50 mL flask. Et₂CO (100 µL, 0.95 mmol) was added, then CH₂Cl₂ (5 mL) was added, generating a dark red-orange solution. After 5 minutes of vigorous stirring, Et₂O (20 mL) was slowly added, but no precipitation ensued. Addition of hexane (20 mL) caused a dark red solid precipitate to form. The product was collected by filtration and washed with hexane. Yield 177.8 mg (0.124 mmol, 61%) of a cis-trans mixture. ¹H NMR (CD₂Cl₂) of trans isomer: δ 7.73 (br, 8H, o-H), 7.56 (br, 4H, p-H), 7.25–7.32, 7.50–7.55 (m, 15H, PPh₃), 5.40 (d, J_{PH} = 2.5 Hz, 5H, Cp), 2.50 (q, J_{HH} = 7.3 Hz, 4H, CH₂), 1.07 (t, $J_{\rm HH}$ = 7.3 Hz, 6H, CH₃). ¹H NMR (CD₂Cl₂) of *cis* isomer: δ 7.73 (br, 8H, o-H), 7.56 (br, 4H, p-H), 7.25-7.32, 7.50-7.55 (m, 15H, PPh₃), 5.61 (s, 5H, Cp), 2.09 (dq, J_{HH} = 18.2 Hz, 7.3 Hz, 2H, CH₂), 1.62 (dq, J_{HH} = 18.2 Hz, 7.3 Hz, 2H, CH₂), 0.73 (t, J_{HH} = 7.3 Hz, 6H, CH₃). ³¹P NMR (CD_2Cl_2) : δ 59.6 (s, *trans* isomer); 53.9 (s, *cis* isomer). ¹³C{¹H} NMR (CD₂Cl₂) of *cis* isomer: δ 248.5 (d, $^2J_{PC}$ = 29 Hz, CO *cis* to P); 247.1 (d, ${}^{2}J_{PC} = 3$ Hz, CO trans to P), 236.2 (s, Et₂C=O), 162.2 (1 : 1 : 1 : 1 quartet, $J_{CB} = 50$ Hz, *ipso-C* of BAr'₄), 135.2 (s, ortho-C of BAr'₄), 133.8 (d, ${}^{2}J_{PC} = 11$ Hz, ortho-C of PPh₃), 132.4 (d, ${}^{4}J_{PC} = 2$ Hz, para-C of PPh₃), 130.0 (d, ${}^{1}J_{PC} = 48$ Hz, *ipso-*C of PPh₃), 130.0 (d, ${}^3J_{\rm PC}$ = 10 Hz, meta-C of PPh₃), 129.3 (qm, ${}^2J_{\rm CF}$ = 31 Hz, meta-C of BAr' $_4$), 125.0 (q, $J_{\rm CF}$ = 272 Hz, CF_3), 117.9 (septet, ${}^3J_{CF} = 4$ Hz, para-C of BAr'₄, 97.5 (s, Cp), 36.8 (s, CH₂), 8.9 (s, CH₃). IR (CH₂Cl₂): ν(CO) 1992 (s), 1910 (vs); v(C=0) 1643 (w); 1610 (vw) cm⁻¹. Found: C, 51.83; H, 2.95. C₆₂H₄₂BF₂₄MoO₃P requires C, 52.12; H, 2.96%.

Synthesis of *cis*-[CpMo(CO)₂(PPh₃)(Et₂CHOH)]⁺BAr'₄⁻. Ph₃C⁺BAr'₄⁻ (208.1 mg, 0.188 mmol) and CpMo(CO)₂(PPh₃)H (96.2 mg, 0.200 mmol) were combined in a 50 mL flask. CH₂Cl₂ (5 mL) was added, producing a dark red-orange solution. Immediately afterwards, Et₂CHOH (100 μL, 0.93 mmol) was added. After 5 minutes of vigorous stirring, Et₂O (5 mL) was added, followed by hexane (10 mL). Addition of more hexane (20 mL) resulted in precipitation of a dark red-orange solid. The product was collected by filtration and washed with hexane. Yield: 211.7 mg (0.148 mmol, 79%). ¹H (CD₂Cl₂): δ 7.73 (br, 8H, *o*-H), 7.56 (br, 4H, *p*-H), 7.26–7.33, 7.59–7.67 (m, 15H,

PPh₃), 5.58 (s, 5H, Cp), 3.17 (m, CH, 1H), 0.88–1.20 (m, 4H, CH₂), 0.57 (t, J_{HH} = 7.4 Hz, 3H, CH₃), 0.40 (t, J_{HH} = 7.4 Hz, 3H, CH₃), -0.62 (dd, J = 8.2 Hz, 3.3 Hz, 1H, OH). ³¹P NMR (CD₂Cl₂): δ 58.3 (s). ¹³C{¹H} NMR (CD₂Cl₂): δ 248.6 (d, ² J_{PC} = 30 Hz, CO cis to P); 248.2 (s, CO trans to P), 162.2 (1 : 1 : 1 : 1 quartet, J_{CB} = 50 Hz, ipso-C of BAr'₄⁻), 135.2 (s, ortho-C of BAr'₄⁻), 133.7 (d, ² J_{PC} = 11 Hz, ortho-C of PPh₃), 133.2 (d, ⁴ J_{PC} = 2 Hz, para-C of PPh₃), 130.4 (d, ³ J_{PC} = 10 Hz, meta-C of PPh₃), 130.2 (d, ¹ J_{PC} = 42 Hz, ipso-C of PPh₃), 129.3 (qm, ² J_{CF} = 34 Hz, meta-C of BAr'₄⁻), 125.0 (q, ¹ J_{CF} = 272 Hz, CF₃), 117.9 (septet, ³ J_{CF} = 4 Hz para-C of BAr'₄⁻), 96.6 (s, Cp), 90.9 (s, CHOH), 26.8 (s, CH₂), 8.6 (s, CH₃), 8.2 (s, CH₃). IR (CH₂Cl₂): ν(OH) 3459 (w, br); ν(CO) 1986 (vs), 1912 (s) cm⁻¹. Found: C, 52.18; H, 3.06. C₆₂H₄₄BF₂₄MoO₃P requires C, 52.05; H, 3.10%.

trans-[CpMo(CO)₂(PPh₃)(Et₂CHOH)]⁺BAr'₄⁻. The *trans* isomer of this alcohol complex was observed during hydrogenations catalyzed by [CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺. ¹H (CD₂-Cl₂): δ 7.74 (br, 8H, o-H), 7.56 (br, 4H, p-H), 7.18–7.28, 7.45–7.55 (m, 15 H, PPh₃), 5.31 (d, $J_{\rm PH}$ = 2.4 Hz, 5H, Cp), 4.96 (d, J = 8.6 Hz, 1H, OH), 3.18 (m, CH, 1H), 1.40–1.55 (m, CH₂, 4H), 0.88 (t, $J_{\rm HH}$ = 7.5 Hz, 6H, CH₃). ³¹P NMR (CD₂Cl₂): δ 61.1 (s).

Synthesis of *trans*-[CpW(CO)₂(PMe₃)(Et₂CHOH)]⁺BAr'₄⁻. Et₂CO (11 μL, 0.10 mmol) was added to a solution of [CpW(CO)₂(PMe₃)(H)₂]⁺BAr'₄⁻ (35.3 mg, 0.0283 mmol) in CD₂Cl₂ (0.72 mL). The solution turned light orange, and conversion to *trans*-[CpW(CO)₂(PMe₃)(Et₂CHOH)]⁺ was about 90% complete in 1 hour. 1 H (CD₂Cl₂): δ 7.73 (br, 8H, ρ -H), 7.57 (br, 4H, ρ -H), 5.46 (d, J_{PH} = 2.6 Hz, 5H, Cp), 5.36 (d, J = 8.4 Hz, 1H, OH), 3.28 (m, CH, 1H), 1.67 (d, J_{PH} = 9.9 Hz, 9 H, P(CH₃)₃), 1.35–1.51 (m, CH₂, 4H), 0.87 (t, J_{HH} = 7.5 Hz, 6H, CH₃). 31 P NMR (CD₂Cl₂): δ –15.1 (s, $^{1}J_{PW}$ = 179 Hz).

Synthesis of [CpMo(CO)₂(PMe₃)(Et₂C=O)]⁺BAr'₄⁻. Ph₃- $C^{+}BAr'_{4}^{-}$ (360.5 mg, 0.326 mmol) and $CpMo(CO)_{2}(PMe_{3})H$ (97.4 mg, 0.331 mmol) were combined in a 50 mL flask. Et₂CO (100 μL, 0.95 mmol) was added, then CH₂Cl₂ (5 mL) was added, generating a dark red-orange solution. After brief stirring, hexane (20 mL) was slowly added. The product precipitated out of solution as an oil. Decanting the supernatant and triturating with pentane (30 mL) resulted in the conversion of the oil to a solid. The product was collected by filtration and washed with pentane. Yield 337.4 mg (0.272 mmol, 83%). The cis: trans ratio was 0.7:1. ¹H NMR (CD₂Cl₂) of trans isomer: δ 7.72 (br, 8H, o-H), 7.57 (br, 4H, p-H), 5.47 (d, J_{PH} = 2.5 Hz, 5H, Cp), 2.46 (q, J_{HH} = 7.4 Hz, 4H, CH₂), 1.61 (d, J_{PH} = 9.9 Hz, 9 H, P(CH₃)₃), 1.07 (t, $J_{HH} = 7.4$ Hz, 6H, CH₃). ¹H NMR (CD_2Cl_2) of *cis* isomer: δ 7.72 (br, 8H, *o*-H), 7.57 (br, 4H, *p*-H), 5.62 (s, 5H, Cp), 2.46 (q, $J_{HH} = 7.4$ Hz, 4H, CH₂, overlapped with same resonance for the *trans* isomer), 1.54 (d, $J_{PH} = 9.9$ Hz, 9 H, P(CH₃)₃), 1.09 (t, $J_{HH} = 7.4$ Hz, 6H, CH₃). ³¹P NMR (CD_2Cl_2) : δ 20.8 (s, trans isomer); 9.7 (s, cis isomer). ¹³C{¹H} NMR (CD₂Cl₂) of *cis-trans* mixture, in the presence of \approx 2 equiv. free Et₂C=O: δ 248.3 (d, J_{PC} = 32 Hz, CO cis to P; cis isomer); 247.1 (d, J_{PC} = 4 Hz, CO trans to P; cis isomer), 241.0 (d, $J_{PC} = 27$ Hz, CO; trans isomer), 238.0 (d, $J_{PC} = 2$ Hz, Et₂C= O, *cis* isomer), 235.7 (d, $J_{PC} = 2$ Hz, Et₂C=O, *trans* isomer), 161.7 (1 : 1 : 1 : 1 quartet, *ipso*-C, $J_{CB} = 50$ Hz), 135.3 (s, *ortho*-C), 129.3 (q, *meta*-C, $^2J_{CF} = 28$ Hz), 125.1 (q, $J_{CF} = 272$ Hz, CF_3), 118.0 (s, *para*-C), 96.4 (Cp), 95.8 (Cp), 37.4 (CH_2) , 37.1 (CH_2) , 20.1 $(d, J_{PC} = 36 \text{ Hz}, P(CH_3)_3)$, 17.4 $(d, J_{PC} = 36 \text{ Hz})$ 30 Hz, P(CH₃)₃), 9.2 (CH₃), 8.9 (CH₃). IR (CH₂Cl₂): ν(CO) 1986 (vs), 1900 (vs); ν (C=O) 1646 (w); 1611 (vw) cm⁻¹. Found: C, 45.49; H, 2.80. C₄₇H₃₆BF₂₄MoO₃P requires C, 45.43; H, 2.92%. When an CD₂Cl₂ solution of this cis-trans mixture was allowed to stand at room temperature for 2 days, the cis: trans ratio increased to 1.1:1, but some decomposition of the alcohol complex was also observed.

Synthesis of [CpW(CO)₂(PMe₃)(Et₂C=O)]⁺BAr'₄⁻. Ph₃C⁺-BAr'₄ (152.8 mg, 0.138 mmol) and CpW(CO)₂(PMe₃)H (57.2 mg, 0.150 mmol) were combined in a 50 mL flask. Et₂CO (100 µL, 0.95 mmol) was syringed onto the solids, followed by addition of CH₂Cl₂ (5 mL), which generated a dark orange solution. Hexane (15 mL) was added, and an oil precipitated out of solution. After standing for two hours, no solids were observed, so more hexane (5 mL) was added, and the reaction mixture was stirred vigorously. After two additional hours, some solid had formed. The supernatant was decanted, and the precipitate was triturated with pentane (20 mL), collected by filtration, and washed with pentane, giving an orange microcrystalline solid (123 mg, 0.0924 mmol, 67%). The cis: trans ratio was about 1.6: 1. ¹H NMR (CD₂Cl₂) of trans isomer: δ 7.73 (br, 8H, o-H), 7.58 (br, 4H, p-H), 5.56 (d, $J_{PH} = 2.4$ Hz, 5H, Cp), 2.55 (q, J_{HH} = 7.4 Hz, 4H, CH₂), 1.60 (d, J_{PH} = 9.7 Hz, 9 H, P(CH₃)₃), 1.07 (t, J_{HH} = 7.4 Hz, 6H, CH₃). ¹H NMR (CD_2Cl_2) of *cis* isomer: δ 7.73 (br, 8H, *o*-H), 7.58 (br, 4H, *p*-H), 5.82 (s, 5H, Cp), 2.55 (q, $J_{HH} = 7.4$ Hz, 4H, CH₂, overlapped with same resonance for the trans isomer), 1.71 (d, J_{PH} = 10.0 Hz, 9 H, $P(CH_3)_3$), 1.10 (t, $J_{HH} = 7.4$ Hz, 6H, CH_3). ³¹P NMR (CD₂Cl₂): δ –15.6 (s, ¹ J_{PW} = 192 Hz, *trans* isomer); -17.2 (s, ${}^{1}J_{PW} = 262$ Hz, cis isomer). IR (CH₂Cl₂): ν (CO) 1971 (s), 1884 (s); v(C=O) 1632 (w); 1611 (w) cm⁻¹. Found: C, 42.12; H, 2.87. C₄₇H₃₆BF₂₄WO₃P requires C, 42.43; H, 2.73%.

Synthesis of [{CpMo(CO)₂(PMe₃)}₂(μ-H)]⁺**BAr'**₄⁻. Ph₃C⁺-BAr'₄⁻ (332.0 mg, 0.300 mmol) and CpMo(CO)₂(PMe₃)H (91.5 mg, 0.311 mmol) were combined in a 50 mL flask, and CH₂Cl₂ (5 mL) was added. Immediately afterwards, Et₂CHOH (100 μL, 0.93 mmol) was added. It appeared that much of the Ph₃C⁺BAr'₄⁻ remained unreacted, so additional CpMo(CO)₂-(PMe₃)H (25 mg, 0.085 mmol) was added, which caused the color of the solution to darken. The dark maroon precipitate that formed upon the addition of hexane was collected by filtration. Yield: 142.0 mg (0.098 mmol, 33%). 1 H (CD₂Cl₂): 2 7.72 (br, 8H, 0 -H), 7.56 (br, 4H, 0 -H), 5.22 (d, 0 -H = 1.8 Hz, 10H, Cp), 1.68 (d, 0 -H = 9.9 Hz, 18 H, P(CH₃)₃), -19.92 (t, 2 - 0 -H = 11 Hz, 1 H, hydride). IR (CH₂Cl₂): 0 C(CO) 1981 (m), 1955 (m), 1896 (s) cm⁻¹. Found: C, 42.84; H, 2.88. 0 C₅₂H₄₁BF₂₄Mo₂O₄P₂ requires C, 43.06; H, 2.85%.

NMR tube kinetics experiments

A standard solution of Et₂CO in CD₂Cl₂ was prepared by dissolving bibenzyl (136.7 mg, 0.750 mmol; internal standard for ¹H NMR integration) and Et₂CO (792 μL, 7.50 mmol) in a 25 mL volumetric flask. The flask was filled to the mark with CD₂Cl₂, giving a 300 mM solution of Et₂CO. For $[CpW(CO)_2(PPh_3)(Et_2C=O)]^+BAr{'}_4^-, \quad [CpW(CO)_2(PPh_3)(Et_2-C)]^+BAr{'}_4^-, \quad [CpW(CO)_2(PPh_3)(Et_2-C)]^+BAr{'}_4^-, \quad [CpW(CO)_2(PPh_3)(Et_2-C)]^+BAr{'}_4^-, \quad [CpW(CO)_2(PPh_3)(Et_2-C)]^ CHOH)]^{+}BAr{'}_{4}^{-},\ [CpMo(CO)_{2}(PPh_{3})(Et_{2}C=O)]^{+}BAr{'}_{4}^{-},\ [Cp-C+O]_{4}^{+}BAr{'}_{4}^{-},\ [Cp-C+O]_{4}^{+$ $W(CO)_2(PMe_3)(Et_2C=O)]^+BAr'_4^-$, and $[CpMo(CO)_2(PMe_3)-PMe_3]^-$ (Et₂C=O)]⁺BAr'₄⁻ the following procedure was used: 0.021 mmol of the metal complex was weighed and transferred into a 5 mm NMR tube equipped with a Young valve. Then 0.7 mL of the standard 300 mM solution of Et₂CO in CD₂Cl₂ was added, giving a catalyst concentration of 30 mM. (If 0.8 mL is added, then the concentration of the metal will drop to 26 mM, such that 11.4 equivalents of ketone will be present, rather than the intended 10 equivalents.) In all cases the solid dissolved and the solution turned red-orange. The tube was then frozen in liquid nitrogen, evacuated on a high vacuum line, then filled with 1 atm H₂. The valve was closed, and the tube was warmed to room temperature. Using this procedure, the pressure of H₂ after the solution was warmed to room temperature should be <4 atm (298/77 = 3.9). The pressure was maintained by periodically refilling with H2 as needed. All reactions were carried out at room temperature (23 °C). In an attempt to promote better diffusion of the H₂ gas into the solvent, the tubes were spun slowly end-over-end using a mechanical stirring motor mounted sideways. The catalytic reactions of the PCy₃ complexes were prepared by in situ reactions of Ph₃C⁺BAr'₄ with CpW(CO)₂(PCy₃)H or CpMo(CO)₂(PCy₃)H (see below); otherwise they were treated in the same manner as those described above.

Results shown in Fig. 2 include formation of the alcohol Et₂CHOH and its subsequent conversion to the ether (Et₂-CH)₂O. Amounts of these two products are given here. For catalysis with [CpW(CO)₂(PPh₃)(Et₂C=O)]⁺BAr'₄⁻, [Et₂-CHOH] = 93 mM and $[(Et_2CH)_2O] = 6$ mM, at t = 24 days, for a total of 3.9 turnovers. For catalysis with [CpW(CO)₂-(PPh₃)(Et₂CHOH)]⁺BAr'₄⁻, the concentration of alcohol formed in the reaction (i.e., after subtracting the alcohol ligand present at the start of the reaction) [Et₂CHOH] = 95 mM and $[(Et_2CH)_2O] = 86$ mM, at t = 25 days, for a total of 4.1 turnovers. For catalysis with [CpMo(CO)₂(PPh₃)(Et₂C=O)]⁺- BAr'_{4}^{-} , $[Et_{2}CHOH] = 255 \text{ mM} \text{ and } [(Et_{2}CH)_{2}O] = 46 \text{ mM}$, at t = 6 days, for a total of 11.6 turnovers. For catalysis with $[CpW(CO)_2(PMe_3)(Et_2C=O)]^+BAr'_4^-, [Et_2CHOH] = 124 \text{ mM}$ and $[(Et_2CH)_2O] = 3$ mM, at t = 24 days, for a total of 4.3 turnovers. For catalysis with [CpMo(CO)₂(PMe₃)(Et₂C=O)]⁺- BAr'_{4} , $[Et_{2}CHOH] = 101 \text{ mM} \text{ and } [(Et_{2}CH)_{2}O] = 25 \text{ mM}, \text{ at}$ t = 24 days, for a total of 5.0 turnovers.

Reaction of CpMo(CO)₂(PCy₃)H with Ph₃C⁺BAr'₄⁻. 0.8 mL of the standard 300 mM solution of Et₂CO in CD₂Cl₂ was added to an NMR tube containing Cp(CO)2(PCy3)MoH (10.6 mg, 0.021 mmol) and Ph₃C⁺BAr'₄⁻ (23.2 mg, 0.021 mmol), and H₂ (<4 atm) was added as described above. The hydride transfer proceeded cleanly, as evidenced by the formation of Ph₃CH (δ 5.56, s, CH). A singlet Cp resonance at δ 5.63 as observed in the ¹H NMR and a singlet at δ 49.1 in the ³¹P NMR are assigned to the ketone complex [CpMo(CO)₂-(PCy₃)(Et₂C=O)]⁺. Resonances for Et₂C=O were significantly broadened in the ¹H NMR, suggesting exchange of free and bound ketone. These resonances overlap with ¹H NMR resonances due to the PCy₃ ligand and were not definitely assigned. Also observed during the catalytic reaction was a singlet Cp resonance at δ 5.73 in the ¹H NMR and a singlet at δ 48.4 in the ³¹P NMR, which are assigned to the alcohol complex [Cp- $Mo(CO)_2(PCy_3)(Et_2CHOH)]^+$. At t = 24 hours, $[Et_2CHOH] =$ 272 mM and $[(Et_2CH)_2O] = 34$ mM, for a total of 11.3 turnovers.

Reaction of CpW(CO)₂(PCy₃)H with Ph₃C+BAr'₄-. 0.7 mL of the standard 300 mM solution of Et₂CO in CD₂Cl₂ was added to an NMR tube containing Cp(CO)2(PCy3)WH (12.4 mg, 0.021 mmol) and Ph₃C⁺BAr'₄⁻ (23.2 mg, 0.021 mmol), and H₂ (<4 atm) was added as described above. As in the Mo analog above, the observation of Ph₃CH indicated a clean hydride transfer. The dihydride [CpW(CO)₂(PCy₃)-(H)₂]⁺BAr'₄⁻³¹ was the predominant metal complex observed throughout the hydrogenation. After 24 days, [Et₂CHOH] = 130 mM and $[(Et_2CH)_2O] = 17$ mM, for a total of 5.4 turnovers. Only about 2% HPCy₃⁺ was observed at t = 8 days, indicating less decomposition compared to the Mo example.

Independent synthesis and identification of HPR₃⁺BAr'₄⁻

The phosphonium cations observed as decomposition products in the catalytic reactions were independently synthesized and characterized. [H(Et₂O)₂]⁺BAr'₄⁻ (5.3 mg, 0.0052 mmol, 0.5 equiv.) was added to PCy₃ (3.1 mg, 0.011 mmol) in CD₂Cl₂ (0.6 mL). The ^{31}P NMR resonance due to free PCy₃ (δ 11.1) broadened, and a broadened new resonance appeared at δ 33.6. This is apparently due to proton transfer exchange between PCy₃ and HPCy₃⁺. Addition of 1 equiv. [H⁺(Et₂O)₂]⁺BAr'₄⁻ resulted in the disappearance of the resonance for PCy3, and the resonance for HPCy₃⁺ (δ 34.6, ${}^{1}J_{PH}$ = 440 Hz) was no longer broadened. Analogous experiments showed line broadening upon partial protonation of PPh₃ (31 P at $\delta - 5.0$) to give HPPh₃⁺ (31 P at δ 8.1), and for protonation of PMe₃ (31 P at δ -61) to give HPMe₃⁺ (31 P at δ -4.2, 1 J_{PH} = 487 Hz, 2 J_{PH} = 15 Hz)

Acknowledgements

We thank the U.S. Department of Energy, Office of Science, Laboratory Technology Research Program, and the Division of Chemical Sciences, Office of Basic Energy Sciences, for support. This research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy. We thank DuPont Central Research for additional support of this work through a CRADA grant. We gratefully acknowledge Dr Paul Fagan and Dr Elisabeth Hauptman (DuPont) for many helpful discussions.

References

- 1 R. R. Schrock and J. A. Osborn, Chem. Commun., 1970, 567.
- 2 Q. Jiang, Y. Jiang, D. Xiao, P. Cao and X. Zhang, *Angew. Chem., Int. Ed.*, 1998, **37**, 1100.
- 3 R. A. Grey, G. P. Pez and A. Wallo, J. Am. Chem. Soc., 1981, 103, 7536; R. A. Sánchez-Delgado, N. Valencia, R.-L. Márquez-Silva, A. Andriollo and M. Medina, *Inorg. Chem.*, 1986, 25, 1106.
- 4 P. A. Chaloner, M. A. Esteruelas, F. Joó and L. A. Oro, Homogeneous Hydrogenation, Kluwer Academic Publishers, Dordrecht,
- 5 S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori, Am. Chem. Soc., 1995, 117, 7562; A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1996, 118, 2521; K. Matsumura, S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1997, 119, 8738; K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori, Angew. Chem., Int. Ed. Engl., 1997, 36, 285; R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, **30**, 97.
- 6 T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M. Terada and R. Noyori, J. Am. Chem. Soc., 1998, 120, 1086; H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama, A. F. England, T. Ikariya and R. Noyori, Angew. Chem., Int. Ed., 1998, 37, 1703; T. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa, K. Murata, E. Katayama, T. Yokozawa, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1998, 120, 13529; T. Ohkuma, D. Ishii, H. Takeno and R. Noyori, J. Am. Chem. Soc., 2000, 122, 6510; R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed., 2001, 40, 40.
- 7 D. N. Kursanov, Z. N. Parnes and N. M. Loim, Synthesis, 1974, 633; D. N. Kursanov, Z. N. Parnes, M. I. Kalinkin and N. M. Loim, Ionic Hydrogenation and Related Reactions, Harwood Academic Publishers, New York, 1985.
- 8 S. S. Kristjánsdóttir and J. R. Norton, in Transition Metal Hydrides, ed. A. Dedieu, VCH, New York, 1992 ch. 9.
- 9 J. A. Labinger, in Transition Metal Hydrides, ed. A. Dedieu, VCH, New York, 1992, ch. 10.
- 10 T.-Y. Cheng, B. S. Brunschwig and R. M. Bullock, J. Am. Chem. Soc., 1998, 120, 13121.
- 11 T.-Y. Cheng and R. M. Bullock, J. Am. Chem. Soc., 1999, 121, 3150.
- 12 R. M. Bullock and B. J. Rappoli, J. Chem. Soc., Chem. Commun., 1989, 1447; R. M. Bullock and J.-S. Song, J. Am. Chem. Soc., 1994, 116, 8602.
- 13 L. Luan, J.-S. Song and R. M. Bullock, J. Org. Chem., 1995, 60, 7170.
- 14 J.-S. Song, D. J. Szalda and R. M. Bullock, J. Am. Chem. Soc., 1996, **118**, 11134.
- 15 J.-S. Song, D. J. Szalda, R. M. Bullock, C. J. C. Lawrie, M. A. Rodkin and J. R. Norton, Angew. Chem., Int. Ed. Engl., 1992, 31,
- 16 J.-S. Song, D. J. Szalda and R. M. Bullock, Organometallics, 2001, 20, 3337.
- 17 R. M. Bullock and M. H. Voges, J. Am. Chem. Soc., 2000, 122, 12594
- 18 W. Beck and K. Sünkel, Chem. Rev., 1988, 88, 1405.
- 19 W. Beck and K. Schloter, Z. Naturforsch., Teil B, 1978, 33, 1214.
- 20 K. Sünkel, H. Ernst and W. Beck, Z. Naturforsch., Teil B, 1981, 36,
- 21 K. Sünkel, G. Urban and W. Beck, J. Organomet. Chem., 1985, 290, 231.

- 22 These assignments, with the CO *cis* to the phosphine having a larger coupling constant, are based on the assignments made by Wrackmeyer and co-workers in their detailed multinuclear NMR study of *cis* and *trans* isomers of CpW(CO)₂(PMe₃)H: B. Wrackmeyer, H. G. Alt and H. E. Maisel, *J. Organomet. Chem.*, 1990, **399**, 125.
- 23 Y.-H. Huang and J. A. Gladysz, J. Chem. Educ., 1988, 65, 298.
- 24 J. W. Faller and A. S. Anderson, *J. Am. Chem. Soc.*, 1970, 92, 5852;
 P. Kalck and R. Poilblanc, *J. Organomet. Chem.*, 1969, 19, 115;
 O. B. Ryan, M. Tilset and V. D. Parker, *J. Am. Chem. Soc.*, 1990, 112, 2618.
- 25 B. D. Martin, K. E. Warner and J. R. Norton, J. Am. Chem. Soc., 1986, 108, 33.
- 26 L. M. Venanzi, Coord. Chem. Rev., 1982, 43, 251.
- 27 C. Nataro and R. J. Angelici, Inorg. Chem., 1998, 37, 2975.
- 28 T.-Y. Cheng, D. J. Szalda and R. M. Bullock, *Chem. Commun.*, 1999, 1629.
- 29 H. J. Wasserman, G. J. Kubas and R. R. Ryan, J. Am. Chem. Soc., 1986, 108, 2294.
- 30 A. A. Gonzalez, K. Zhang, S. P. Nolan, R. L. de la Vega, S. L. Mukerjee, C. D. Hoff and G. J. Kubas, *Organometallics*, 1988, 7, 2429; A. A. Gonzalez, K. Zhang and C. D. Hoff, *Inorg. Chem.*, 1989, 28, 4285.
- 31 R. M. Bullock, J.-S. Song and D. J. Szalda, Organometallics, 1996, 15, 2504.
- 32 C. A. Tolman, Chem. Rev., 1977, 77, 313.
- 33 P. G. Jessop and R. H. Morris, Coord. Chem. Rev., 1992, 121, 155;
 D. M. Heinekey and W. J. Oldham, Jr., Chem. Rev., 1993, 93, 913;
 G. J. Kubas, Metal Dihydrogen and σ-Bond Complexes: Structure, Theory, and Reactivity, Kluwer Academic/Plenum Publishers, New York, 2001.
- 34 E. T. Papish, F. C. Rix, N. Spetseris, J. R. Norton and R. D. Williams, *J. Am. Chem. Soc.*, 2000, **122**, 12235.
- 35 M. Tilset and V. D. Parker, *J. Am. Chem. Soc.*, 1989, **111**, 6711, as modified in *J. Am. Chem. Soc.*, 1990, **112**, 2843.
- 36 J. M. Hanckel and M. Y. Darensbourg, J. Am. Chem. Soc., 1983, 105, 6979; M. Y. Darensbourg and M. M. Ludvig, Inorg. Chem., 1986, 25, 2894.
- 37 S. E. Landau, R. H. Morris and A. J. Lough, *Inorg. Chem.*, 1999, 38, 6060
- 38 I. M. Kolthoff and M. K. Chantooni, Jr., J. Am. Chem. Soc., 1973, 95, 8539.
- 39 K.-T. Smith, J. R. Norton and M. Tilset, Organometallics, 1996, 15, 4515.
- 40 E. J. Moore, J. M. Sullivan and J. R. Norton, J. Am. Chem. Soc., 1986, 108, 2257.
- 41 R. T. Edidin, J. M. Sullivan and J. R. Norton, J. Am. Chem. Soc., 1987, 109, 3945.
- 42 A. J. Lough, S. Park, R. Ramachandran and R. H. Morris, *J. Am. Chem. Soc.*, 1994, **116**, 8356; S. Park, R. Ramachandran, A. J. Lough and R. H. Morris, *J. Chem. Soc., Chem. Commun.*, 1994, 2201; J. C. Lee, Jr., E. Peris, A. L. Rheingold and R. H. Crabtree,

- J. Am. Chem. Soc., 1994, 116, 11014; E. Peris, J. C. Lee, Jr. and R. H. Crabtree, J. Chem. Soc., Chem. Commun., 1994, 2573; J. Wessel, J. C. Lee, Jr., E. Peris, G. P. A. Yap, J. B. Fortin, J. S. Ricci, G. Sini, A. Albinati, T. F. Koetzle, O. Eisenstein, A. L. Rheingold and R. H. Crabtree, Angew. Chem., Int. Ed. Engl., 1995, 34, 2507; E. Peris, J. C. Lee, Jr., J. R. Rambo, O. Eisenstein and R. H. Crabtree, J. Am. Chem. Soc., 1995, 117, 3485.
- 43 D.-H. Lee, B. P. Patel, E. Clot, O. Eisenstein and R. H. Crabtree, Chem. Commun., 1999, 297.
- 44 R. H. Crabtree, P. E. M. Siegbahn, O. Eisenstein, A. L. Rheingold and T. F. Koetzle, *Acc. Chem. Res.*, 1996, **29**, 348; R. H. Crabtree, *J. Organomet. Chem.*, 1998, **577**, 111.
- 45 M. Y. Darensbourg and C. E. Ash, Adv. Organomet. Chem., 1987, 27, 1
- 46 P. L. Gaus, S. C. Kao, K. Youngdahl and M. Y. Darensbourg, J. Am. Chem. Soc., 1985, 107, 2428.
- 47 P. A. Tooley, C. Ovalles, S. C. Kao, D. J. Darensbourg and M. Y. Darensbourg *I. Am. Chem. Soc.* 1986 108 5465
- Darensbourg, *J. Am. Chem. Soc.*, 1986, **108**, 5465. 48 L. Markó and Z. Nagy-Magos, *J. Organomet. Chem.*, 1985, **285**, 193.
- 49 J.-J. Brunet, R. Chauvin and P. Leglaye, Eur. J. Inorg. Chem., 1999, 713; J.-J. Brunet, Eur. J. Inorg. Chem, 2000, 1377.
- 50 M. Yamakawa, H. Ito and R. Noyori, J. Am. Chem. Soc., 2000, 122, 1466
- 51 D. A. Alonso, D. Guijarro, P. Pinho, O. Temme and P. G. Andersson, J. Org. Chem., 1998, 2749; S. J. M. Nordin, P. Roth, T. Tarnai, D. A. Alonso, P. Brandt and P. G. Andersson, Chem. Eur. J, 2001, 7, 1431.
- 52 D. A. Alonso, P. Brandt, S. J. M. Nordin and P. G. Andersson, J. Am. Chem. Soc., 1999, 121, 9580.
- 53 K. Abdur-Rashid, A. J. Lough and R. H. Morris, Organometallics, 2000, 19, 2655; K. Abdur-Rashid, A. J. Lough and R. H. Morris, Organometallics, 2001, 20, 1047; K. Abdur-Rashid, M. Faatz, A. J. Lough and R. H. Morris, J. Am. Chem. Soc., 2001, 123, 7473.
- 54 Y. Blum, D. Czarkie, Y. Rahamim and Y. Shvo, Organometallics, 1985, 4, 1459; Y. Shvo, D. Czarkie, Y. Rahamim and D. F. Chodosh, J. Am. Chem. Soc., 1986, 108, 7400; N. Menashe, E. Salant and Y. Shvo, J. Organomet. Chem., 1996, 514, 97; Y. Shvo, I. Goldberg, D. Czerkie, D. Reshef and Z. Stein, Organometallics, 1997, 16, 133.
- 55 C. P. Casey, S. W. Singer, D. R. Powell, R. K. Hayashi and M. Kavana, *J. Am. Chem. Soc.*, 2001, **123**, 1090.
- 56 M. P. Magee and J. R. Norton, J. Am. Chem. Soc., 2001, 123, 1778
- 57 M. Schlaf, P. Ghosh., P. J. Fagan, E. Hauptman and R. M. Bullock, Angew. Chem., Int. Ed., 2001, 40, 3887.
- 58 A. Bainbridge, P. J. Craig and M. Green, J. Chem. Soc. A, 1968, 2715; W. Beck, K. Schloter, K. Sünkel and G. Urban, *Inorg. Synth.*, 1989, 26, 96.
- 59 P. Kalck, R. Pince, R. Poilblanc and J. Roussel, J. Organomet. Chem., 1970, 24, 445.
- 60 S. R. Bahr and P. Boudjouk, J. Org. Chem., 1992, **57**, 5545.
- 61 M. Brookhart, B. Grant and A. F. Volpe, Jr., Organometallics, 1992, 11, 3920.